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Abstract. Given a sequence of graphs {Gn}n≥1 and fixed graph H, denote by T (H,Gn) the
number of monochromatic copies of the graph H in Gn in a uniformly random cn-coloring of the
vertices of Gn. In this paper we study the joint distribution of monochromatic subgraphs for
dense multiplex networks, that is, networks with multiple layers. Specifically, we consider the
joint distribution of Tn := (T (H,Gn), T (H

′, G′
n)), for two sequences of dense graphs {Gn}n≥1 and

{G′
n}n≥1 on the same set of vertices and two fixed graphs H and H ′.
Under a new notion of joint convergence of the graphs Gn and G′

n in the cut metric, we show
that when the number of cn = c is fixed, the limiting distribution of Tn is the sum of two in-
dependent components, one of which is a bivariate Gaussian and the other is a sum of bivariate
stochastic integrals. This generalizes the classical birthday problem, which involves understanding
the asymptotics of T (Ks,Kn), the number of monochromatic s-cliques in a complete graph Kn (s-
matching birthdays among a group of n friends), to general monochromatic subgraphs in multiplex
networks. This also extends previous results on the marginal convergence of T (H,Gn) and is useful
in establishing the joint convergence of various subgraph counting statistics that arise from random
vertex coloring of graphs. Several examples are discussed and an alternate proof using random
matrix theory is also presented for the case of monochromatic edges.

1. Introduction

Let Gn = (V (Gn), E(Gn)) be a sequence of graphs with vertex set V (Gn) = [n] := {1, 2, · · · , n}
and edge E(Gn). Suppose the vertices of Gn are colored uniformly at random with c ≥ 2 colors,
that is,

P(v ∈ [n] is assigned with color a ∈ {1, 2, . . . , c}) = 1

c
,

independently from the other vertices. Given such a coloring an edge (u, v) ∈ E(Gn) is said to be
monochromatic if both u and v are assigned the same color. Formally, if Xv denotes the color of
the vertex v ∈ [n], then (u, v) ∈ E(Gn) is monochromatic if Xu = Xv.

T (K2, Gn) =
1

2

∑
1≤u̸=v≤n

auv(Gn)1{Xu = Xv}, (1.1) eq:T_K2_G

where A(Gn) = ((auv(Gn)))1≤u,v≤n is the adjacency matrix of Gn. More generally, for a fixed
connected graph H = (V (H), E(H)) denote by T (H,Gn) the number of monochromatic copies of
H in Gn, that is,

T (H,Gn) :=
1

|Aut(H)|
∑

s∈[n]|V (H)|

∏
(a,b)∈E(H)

asasb(Gn)1{X=s} (1.2) def:T_H_G

where:
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• [n]|V (H)| is the set of all |V (H)|-tuples s = (s1, · · · , s|V (H)|) ∈ [n]|V (H)| with distinct indices.1

Thus, the cardinality of [n]|V (H)| is
n!

(n−|V (H)|)!
• For any s = (s1, · · · , s|V (H)|) ∈ [n]|V (H)|,

1{X=s} := 1{Xs1 = · · · = Xs|V (H)|}.

• Aut(H) is the automorphism group of H, that is, the number of permutations σ of the
vertex set V (H) such that (x, y) ∈ E(H) if and only if (σ(x), σ(y)) ∈ E(H).

Note that

ET (H,Gn) =
N(H,Gn)

c|V (H)|−1
,

where N(H,Gn) is the number of copies of H in Gn.
Various problems in combinatorial probability, nonparametric statistics, and theoretical com-

puter science involve the study of (1.1) and (1.2). The following are some examples:

Example 1.1 (Birthday problem). Suppose Gn is a friendship-graph (two people are connected by
an edge in the graph if they are friends) which is colored uniformly randomly with c = 365 colors
(where the colors correspond to birthdays and the birthdays are assumed to be uniformly distributed
across the year). In this case a monochromatic edge in Gn corresponds to two friends with the
same birthday. The celebrated birthday problem asks for the probability that there are two friends
with the same birthday, that is, P(T (K2, Gn) > 0). This is a celebrated problem in elementary
probability (see [23, 25, 45] references therein), which appear in many different contexts, such as
the study of coincidences [26], graph coloring problems [2, 10, 18], testing discrete distributions
[4, 27, 54], security of hash functions [5, 60], and the discrete logarithm problem [7, 29, 34], among
others. A natural generalization of the birthday problem is to consider higher-order birthday
matches (often referred to as multi-collisions); that is, the number of r-tuples of friends sharing
the same birthday [26, 44, 47, 61]. This corresponds to studying the asymptotics of T (Kr, Gn), the
number of monochromatic r-cliques Kr in the friendship graph Gn [9, 11].

Example 1.2 (Graph-based nonparametric 2-sample tests). One of the fundamental problems in
statistical inference is to decide whether two different data sets are generated from the same statis-
tical model. This is the classical 2-sample problem which can be formally stated as follows: Given
independent and identically distributed samples Xn = {X1, X2, . . . , Xn} and Yn = {Y1, Y2, . . . , Yn}
from two multivariate distributions F and G, respectively, the two- sample problem is to test the
hypothesis:

H0 : F = G versus H1 : F ̸= G. (1.3) eq:FG

A theme that has emerged repeatedly in the development of nonparametric 2-sample tests is the
use of random geometric graphs. This includes the celebrated Friedman-Rafsky test based on the
minimum spanning free (MST) [28], tests based on nearest-neighbor (NN) graphs [30, 58], and
optimal matchings [56]. Here, the idea is to construct a random geometric graph Gn of the pooled
sample Xn ∪ Yn, and reject the null hypothesis H0 in (1.3) if the number of edges in G with one
end-point in sample 1 and other in sample 2 is ‘small’. In other words, H0 is rejected when the
number of non-monochromatic edges in G is ‘small’ (where the sample labels corresponds to the
colors), which is equivalent to rejecting H0 when the number of monochromatic edges is ‘large’.
Hence, understanding the null distribution of such a test statistic entails studying the asymptotic
properties of T (K2,Gn) with c = 2 colors.

1For a set S, the set SN denotes the N -fold cartesian product S × S × · · · × S.
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Example 1.3 (Quadratic Rademacher chaos). When c = 2, T (K2, Gn) centered by its mean can
be expressed as a quadratic form in Rademacher variables as follows:

T (K2, Gn)− ET (K2, Gn) =
1

2

∑
1≤u̸=v≤n

auv(Gn)

(
1{Xu = Xv} −

1

2

)
=

1

4

∑
1≤u̸=v≤n

auv(Gn)(21{Xu = 1} − 1)(21{Xv = 1} − 1)

=
1

4

∑
1≤u̸=v≤n

auv(Gn)YuYv, (1.4) eq:K2quadratic

where Yu = 21{Xu = 1} − 1, for 1 ≤ u ≤ n, are i.i.d. Rademacher random variables. Hence,
when c = 2, T (K2, Gn) − ET (K2, Gn) is the quadratic Rademacher chaos [15, 52], which appears
in various contexts, for example, the Hamiltonian of the Ising model [3, 8], testing independence in
auto-regressive models [6], and Ramsey theory [36]. A characterization of all distributional limits
of (1.4) has been obtained recently in [13].

A number of recent papers have studied the limiting distribution of T (H,Gn) (appropriately
centered and scaled), beginning with the work of Bhattacharya et al. [10] which considered the
case H = K2. Specifically, [10, Theorem 1.3] shows that T (K2, Gn) is asymptotically normal
whenever the fourth moment of a suitably normalized version of T (K2, Gn) converges to 3 (the
fourth moment of the standard normal distribution). This is an instance of the celebrated fourth-
moment phenomenon, which was originally discovered in the seminal papers [49, 53] and has, since
then, emerged as a unifying principle governing the asymptotic normality of random multilinear
forms (see the book [50] for further details). Going beyond monochromatic edges, subsequently it
was shown that the fourth-moment phenomenon continues to hold for the asymptotic normality
of T (K3, Gn) (the number of monochromatic triangles) when c ≥ 5 [12] and for T (H,Gn), for
any fixed graph H, when c ≥ 30 [22]. For c = 2 a more refined result about the asymptotic
normality of T (H,Gn) has been obtained recently by Mani and Mikulincer [41] in terms of local
influence-based conditions. While the aforementioned results provide sufficient conditions (some
which are also necessary) for the asymptotic normality of T (H,Gn), there are many instances
where T (H,Gn) has a non-Gaussian limit. This, in particular, is often the case when Gn is a
sequence dense graph, that is, |E(Gn)| = Θ(n2). In this case, to describe the limiting distribution
of T (H,Gn) it is convenient to adopt the framework of graph limit theory [38] and assume Gn

converges (in the cut-distance) to a graphon W . Then limiting distribution of T (H,Gn) (suitably
standardized) has both Gaussian and non-Gaussian components, where non-Gaussian component
is a (possibly) infinite weighted sum of independent centered chi-squared random variables with
the weights determined by the spectral properties of a graphon derived from W (see [10, Theorem
1.4] and [9, Theorem 1.3]).

Given the above results a natural next step is to study the joint distribution of a finite collection
of monochromatic subgraphs. Specifically, given a collection of r ≥ 1 graphs H = {H1, H2, . . . ,Hr}
what is limiting joint distribution of (T (H1, Gn), T (H2, Gn), . . . , T (Hr, Gn)) (suitably standard-
ized)? More generally, one can consider the joint distribution of

T (H,Gn) := (T (H1, G
(1)
n ), T (H2, G

(2)
n ), . . . , T (Hr, G

(d)
n )),

where Gn = (G
(1)
n , G

(2)
n , . . . , G

(d)
n ) is a collection of d ≥ 1 graphs having the same vertex set [n].

Multiple graphs sharing a common vertex set are known as multilayer networks (or multiplexes).
The ubiquitous presence of complex relational data with many interdependencies have propelled
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the rapidly developing literature on multiplex networks (see [1, 14, 19, 24, 33, 35, 37, 39, 40, 59]
and the references therein). In this paper we derive the asymptotic distribution of T (H,Gn) for a
sequence of dense multiplexes Gn. To describe the limiting distribution we define a natural notion
of convergence of multiplexes (in the joint cut-distance) and also invoke the framework of multiple
stochastic integrals (for capturing the non-Gaussian dependencies between the different marginals).
Under the assumption that the multiplex Gn and a certain pairwise overlap function converges, we
show that the limiting distribution of T (H,Gn) has 2 independent components: one of which is
a multivariate Gaussian and the other is a sum of independent bivariate stochastic integrals (see
Theorem 1.1). The stochastic integrals are with respect to the same underlying Brownian motion
on [0, 1], which captures the dependence between the different marginals. A key ingredient of the
proof is a invariance principle which allows us to replace the coloring indicators with appropriately
chosen Gaussian variables (see Section 2).

1.1. Convergence of Graphs and Multiplexes. The theory of graph limits [16, 17, 38] has
received phenomenal attention over the last few years. It builds a bridge between combinatorics and
analysis, and has found applications in several disciplines including statistical physics, probability,
and statistics [3, 20, 21]. For a detailed exposition of the theory of graph limits refer to Lovász
[38]. Here we mention the basic definitions about the convergence of graph sequences. If F and G
are two graphs, then define the homomorphism density of F into G by

t(F,G) :=
| hom(F,G)|
|V (G)||V (F )|,

where |hom(F,G)| denotes the number of homomorphisms of F into G. In fact, t(F,G) is the
proportion of maps ϕ : V (F ) → V (G) which define a graph homomorphism.

To define the continuous analogue of graphs, consider W to be the space of all measurable
functions from [0, 1]2 into [0, 1] which are symmetric, that is, W (x, y) = W (y, x), for all x, y ∈ [0, 1].
For a simple graph F with V (F ) = {1, 2, . . . , |V (F )|}, let

t(F,W ) =

ˆ
[0,1]|V (F )|

∏
(i,j)∈E(F )

W (xi, xj)dx1dx2 · · · dx|V (F )| = E

 ∏
(i,j)∈E(F )

W (Ui, Uj)

 ,

where U1, U2, . . . , Un are i.i.d. Unif[0, 1]. It is easy to verify that t(F,G) = t(F,WG), where WG is
the empirical graphon associated with the graph G which defined as:

WG(x, y) = 1{(⌈|V (G)|x⌉, ⌈|V (G)|y⌉) ∈ E(G)}. (1.5) ?eq:emp_graph?

(In other words, to obtain the empirical graphonWG from the graph G, partition [0, 1]2 into |V (G)|2
squares of side length 1/|V (G)|, and let WG(x, y) = 1 in the (i, j)-th square if (i, j) ∈ E(G), and 0
otherwise.)

The basic definition of graph limit theory is in terms of the convergence of the homomorphism
densities [16, 17, 38]. Specifically, we say a sequence of graphs {Gn}n≥1 converges to a graphon W
if for every finite simple graph F ,

lim
n→∞

t(F,Gn) = t(F,W ). (1.6) eq:graph_limit

This convergence can be captured through the cut-distance which is defined as follows:

?⟨definition:Wconvergence⟩?Definition 1.1. [38] The cut-distance between two graphons W1,W2 ∈ W is defined as,

||W1 −W2||□ := sup
A,B∈[0,1]

∣∣∣∣ˆ
A×B

(W1(x, y)−W2(x, y)) dxdy

∣∣∣∣ , (1.7) eq:Wconvergence
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for W1,W2 ∈ W .

Using the cut distance, one can an equivalence relation on W as follows: W1 ∼ W2 when

infϕ ∥W1 −W ϕ
2 ∥□ = 0, where the infimum taken over all measure-preserving bijections ϕ : [0, 1] →

[0, 1] and W ϕ
1 (x, y) := W1(ϕ(x), ϕ(y)), for x, y ∈ [0, 1]. The orbit of W ∈ W is the set of all

functions W ϕ, as ϕ varies over all measure preserving bijections from [0, 1] → [0, 1]. Denote by W̃

the closure of the orbit of W in (W , ∥ · ∥□). The quotient space W̃ = {W̃ : W ∈ W } of closed
equivalence classes is associated with the cut-metric:

δ□(W̃1, W̃2) := inf
ϕ

∥W1 −W ϕ
2 ∥□.

The central result in graph limit theory is that a sequence of graphs Gn is converges to W in the
sense of (1.6) if and only if it is a Cauchy sequence in the δ□ metric. Moreover, a sequence of

graphs {Gn}n≥1 is to a graphon W if and only if δ□(W̃
Gn , W̃ ) → 0 (see [, Theorem 3.8]).

In this paper we deal with sequences of multilayer graphs (multiplexes), where one has multiple
graphs on the same set vertices. To define convergence of a sequence of d-multiplexes {Gn}n≥1

common vertex set V (Gn) = [n], we need the notion of joint cut metric. Towards this, denote
by W d the d-fold Cartesian product of W . The elements of W d will be referred to as d-graphons.
We can define an equivalence relation on W d as follows: Given W = (W1,W2, . . . ,Wd) ∈ W d and

W ′ = (W ′
1,W

′
2, . . . ,W

′
d) ∈ W d, we say W1 ∼ W2, if infϕ

∑d
j=1 ∥W

ϕ
j −W ′

j∥□ = 0, where, as before,

the infimum taken over all measure-preserving bijections ϕ : [0, 1] → [0, 1]. Denote by W̃ the closure

of the orbit of W and the quotient space of closed equivalence classes as W̃ d = {W̃ : W ∈ W d}.
For W̃ , W̃ ′ ∈ W̃ d, define the joint cut-metric as:

δ□(W̃ , W̃ ′) := inf
ϕ

d∑
j=1

∥W ϕ
j −W ′

j∥□.

We will say a sequence of d-multiplex {Gn}n≥1 = {(G(1)
n , G

(2)
n , . . . , Gd

n)}n≥1 converges to d-graphon
W = (W1,W2, . . . ,Wd) ∈ W d, if

δ□(W̃
Gn , W̃ ) → 0, (1.8) eq:distanceW

where WGn = (WG
(1)
n ,WG

(2)
n , . . . ,WG

(d)
n ).

1.2. Statement of the Results. With the above preparations, we are now ready to state our main
results. To this end, fix an integer d ≥ 1 and a finite collection of graphs H = {H1, H2, . . . ,Hd}.
Then for a sequence of d-multiplexes {Gn}n≥1 = {(G(1)

n , G
(2)
n , . . . , Gd

n)}n≥1, define the vector of
standardized monochromatic copies as:

Γ(H,Gn) =

Γ(H(1), G
(1)
n )

...

Γ(H(d), G
(d)
n )

 , (1.9) eq:GammaHGnd

where

Γ(H,Gn) = |Aut(H)|c|V (H)|− 3
2

{
T (H,Gn)− E(T (H,Gn))

n|V (H)|−1

}
, (1.10) eq:GammaHGn

for any graph H = (V (H), E(H)) and any graph sequence {Gn}n≥1 with Gn = (V (Gn), E(Gn)).
Our aim is to derive the limiting distribution of Γ(H,Gn) when {Gn}n≥1 converges to a d-multiplex
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H1

a

H2

a1

b b1

à

pa,bq,pa1,b1q

H1

à

pa,bq,pa1,b1q

H2

Figure 1. The (a, b), (a′, b′)-vertex join of the graphs H1 and H2.
⟨fig:vertexHab⟩

W . The result depends on whether the number of colors cn = c is fixed or cn → ∞. We begin with
fixed colors case.

1.2.1. Asymptotic Distribution of Γ(H,Gn) for Fixed Number of Colors. To describe the limiting
distribution of Γ(H,Gn) we need a few notations. We begin by introducing the notion of the
2-point conditional kernel of a graphon W as follows:

Definition 1.2 (2-point conditional kernel). Given a finite graphH = (V (H), E(H)) and a graphon
W , define the 2-point conditional kernel of H with respect to W as follows:2

WH(x, y) :=
∑

1≤a̸=b≤|V (H)|

E

 ∏
(i,j)∈E(H)

W (Ui, Uj)

∣∣∣∣∣∣ Ua = x, Ub = y

 . (1.11) eq:WH

To describe the asymptotic variance of Γ(H,Gn) it is convenient to define the following graph
operation.

?⟨definition:H2⟩?Definition 1.3. Suppose H1 = (V (H1), E(H1)) and H2 = (V (H2), E(H2)) be two graphs with
vertex sets V (H1) = {1, 2, . . . , |V (H1)|} and V (H2) = {1, 2, . . . , |V (H2)|} and edge sets E(H1) and
E(H2), respectively. Then for 1 ≤ a ̸= b ≤ |V (H1)| and 1 ≤ a′ ̸= b′ ≤ |V (H2)|, the (a, b), (a′, b′)-
join of H1 and H2 is the simple graph obtained by identifying the vertices a and b in H1 with the
vertices a′ and b′ in H2, respectively. The resulting graph will be denoted by

H1

⊗
(a,b),(a′,b′)

H2.

An example is shown in Figure 1. (Notice that the (a, b), (a′, b′)-join of between 2 graphs can be
different from the (b, a), (a′, b′)-join.)

With the above notations we can now state our result about the asymptotic distribution of
Γ(H,Gn) for fixed number of colors. Throughout stochastic integrals are considered in the Weiner-
Itô sense [31] (see also [32, Chapter 7]).

2Note that WH can takes values greater than, hence, technically WH it is not a graphon. However, WH ≤
|V (H)|(V (H) − 1), hence, WH ∈ W1, where W1 is the space of bounded, symmetric, measurable functions from
[0, 1]2 → [0,∞).
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⟨thm:jointTHGn⟩Theorem 1.1. Suppose {Gn}n≥1 is a sequence of d-multiplexes converging to a d-graphon W . Let
H = {H1, H2, . . . ,Hd} be a collection of fixed graphs and Γ(H,Gn) be as defined in (1.9). Assume,
for 1 ≤ i ̸= j ≤ d, there exists ρij ≥ 0 such that

lim
n→∞

⟨WG
(i)
n

Hi
,WG

(j)
n

Hj
⟩ = ρij , (1.12) eq:WGnHcovariance

where WG
(i)
n

Hi
is the 2-point conditional kernel of the empirical graphon WG

(i)
n with respect to Hi, for

1 ≤ i ≤ d. Then, as n → ∞,

Γ(H,Gn)
D−→

√
2

(
1− 1

c

)
Z +

1√
c

c−1∑
a=1



ˆ
[0,1]2

(W1)H1(x, y)dB
(a)
x dB(a)

y

...ˆ
[0,1]2

(Wd)Hd
(x, y)dB(a)

x dB(a)
y

 ,

where

• (Wi)Hi is the 2-point conditional kernel of the graphon Wi with respect to Hi, for 1 ≤ i ≤ d;
• Z ∼ Nd(0,Σ), with Σ = ((σij))1≤i,j≤d defined as:

σij :=


1

4

∑
1≤a̸=b≤|V (Hi)|
1≤a′ ̸=b′≤|V (Hi)|

t

Hi

⊗
(a,b),(a′,b′)

Hi,Wi

− ∥(Wi)Hi∥2 for i = j,

ρij − ⟨(Wi)Hi , (Wj)Hj ⟩ for i ̸= j;

• {B(1)
t , . . . , B

(c−1)
t }t∈[0,1] are i.i.d Brownian motions on [0, 1] which are independent of Z.

The proof of Theorem 1.1 is given in Section 3. A key ingredient of the proof is a general
invariance principle, which shows the following: random multilinear forms indexed by the variables
which encode the vertex coloring are asymptotically close in moments to multilinear forms indexed
by appropriately chosen Gaussian variables (see Section 2). To apply this result, we first step
express T (H,Gn) − ET (H,Gn), for any graph H, as a weighted sum of multilinear forms with
degrees ranging from 2 to |V (H)| (see Lemma 3.1). Next, we show all terms in the expansion
with degree greater than 2 are asymptotically negligible (see Lemma 3.2). In other words, only the
quadratic terms in the expansion of T (H,Gn)−ET (H,Gn) contributes to the limiting distribution.
Then using the invariance principle the problem of deriving the joint distribution of Γ(H,Gn)
reduces to finding the joint distribution of certain Gaussian quadratic forms, which is analyzed
using the Cramér-Wold device and the spectral theorem.

Remark 1.1. Note that Theorem 1.1 assumes that the layers of the multiplex Gn converge jointly
in the cut-distance and the pairwise overlaps of the 2-point conditional kernels have a limit. In
Section 4 we provide examples which illustrate that both these assumptions are necessary for the
limiting distribution of Γ(H,Gn) to exist.

One useful special case of Theorem 1.1 is when H1 = H2 = · · · = Hd = K2 is an edge. In this
case, the 2-conditional kernel WK2(x, y) = 2W (x, y) (recall (1.11)) and, for 1 ≤ i ̸= j ≤ d,

⟨WG
(i)
n

K2
,WG

(j)
n

K2
⟩ = 2|E(G

(i)
n ) ∩ E(G

(j)
n )|

n2
,
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where E(G
(i)
n ) is the edge set of the graph G

(i)
n , for 1 ≤ i ≤ d. Hence, Theorem 1.1 implies the

following result:

⟨cor:K2joint⟩Corollary 1.2. Suppose {Gn}n≥1 is a sequence of d-multiplexes converging to a d-graphon W .
Also, assume that there exists ρij ≥ 0 such that

2|E(G
(i)
n ) ∩ E(G

(j)
n )|

n2
→ ρij , (1.13) eq:covarianceedge

for 1 ≤ i ̸= j ≤ d. Then, as n → ∞,

1

n


T (K2, G

(1)
n )

...

T (K2, G
(d)
n )

− 1

c

|E(G
(1)
n )|
...

|E(G
(d)
n )|


 D−→

√
c− 1√
2c

Z +
1

2c

c−1∑
a=1



ˆ
[0,1]2

W1dB
(a)
x dB(a)

y

...ˆ
[0,1]2

WddB
(a)
x dB(a)

y

 ,

where

• Z ∼ Nd(0,Σ), with Σ = ((σij))1≤i,j≤d defined as:

σij :=


ˆ
[0,1]2

Wi(x, y)(1−Wi(x, y))dxdy for i = j,

ρij −
ˆ
[0,1]2

Wi(x, y)Wj(x, y)dxdy for i ̸= j;

• {B(1)
t , . . . , B

(c−1)
t }t∈[0,1] are i.i.d Brownian motions on [0, 1] which are independent of Z.

If all the d layers of Gn are the same, that is, G
(1)
n = G

(2)
n = · · · = G

(d)
n = Gn, then Theorem

1.1 gives joint distribution of the (Γ(H1, Gn), . . . ,Γ(Hd, Gn)) for any collection of fixed graphs

H = {H1, H2, . . . ,Hd}. In this case, the limit of ⟨WGn
Hi

,WGn
Hj

⟩, for 1 ≤ i ̸= j ≤ d, can be derived

from the convergence of {Gn}n≥1 to a graphon W . Specifically, we have (see Lemma 3.5 for the
proof),

lim
n→∞

⟨WGn
H1

,WGn
H2

⟩ = 1

4

∑
1≤u̸=v≤|V (H1)|
1≤u′ ̸=v′≤|V (H2)|

t

H1

⊗
(u,v),(u′,v′)

H2,W

 .

The above identity combined with Theorem 1.1 gives the following result:

⟨cor:jointTHGnW⟩Corollary 1.3. Suppose {Gn}n≥1 is a sequence of graphs converging to a graphon W and let
H = {H1, H2, . . . ,Hd} be a collection of fixed graphs. Then, as n → ∞,

Γ(H1, Gn)
...

Γ(Hd, Gn)

 D−→

√
2

(
1− 1

c

)
Z +

1√
c

c−1∑
a=1



ˆ
[0,1]2

WH1(x, y)dB
(a)
x dB(a)

y

...ˆ
[0,1]2

WHd
(x, y)dB(a)

x dB(a)
y

 ,

where
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• Z ∼ Nd(0,Σ), with Σ = ((σij))1≤i,j≤d defined as:

σij :=



1

4

∑
1≤a̸=b≤|V (Hi)|
1≤a′ ̸=b′≤|V (Hi)|

t

Hi

⊗
(a,b),(a′,b′)

Hi,W

− ∥WHi∥2 for i = j,

1

4

∑
1≤a̸=b≤|V (Hi)|
1≤a′ ̸=b′≤|V (Hj)|

t

Hi

⊗
(a,b),(a′,b′)

Hj ,W

− ⟨WHi ,WHj ⟩ for i ̸= j;

• {B(1)
t , . . . , B

(c−1)
t }t∈[0,1] are i.i.d Brownian motions on [0, 1] which are independent of Z.

Note that by taking H = {H} is a singleton we recover from Corollary 1.3 the marginal distribu-
tion of T (H,Gn), which was proved in [9, Theorem 3.1]. In this case the limiting distribution can
be alternately expressed in terms of the eigenvalues of the 2-point conditional kernel (recall (1.11))
as discussed in the following remark.

Remark 1.2. Note that by the spectral theorem, for any graph H, the 2-point conditional kernel
WH can be expressed as (see [38, Section 7.5]):

WH(x, y) =
∞∑
s=1

λsϕs(x)ϕs(y),

where {λs}s≥1 are the eigenvalues and {ϕs}s≥1 are an orthonormal collection of eigenvectors of

the operator TWH
(f) =

´ 1
0 W (x, y)f(y)dy. Hence, for each a ∈ [c], by the linearity of stochastic

integrals and the product formula (see [32, Page 100]):

ˆ
[0,1]2

WH(x, y)dB(a)
x dB(a)

y =

∞∑
s=1

λs

ˆ
[0,1]2

ϕs(x)ϕs(y)dB
(a)
x dB(a)

y

=
∞∑
s=1

λs

((ˆ 1

0
ϕs(x)dBx

)2

−
ˆ 1

0
ϕs(x)

2dx

)

=
∞∑
s=1

λs

((ˆ 1

0
ϕs(x)dB

(a)
x

)2

− 1

)
(by orthonormality)

D
=

∞∑
s=1

λs

(
Z2
s,a − 1

)
,

where Zs,a
D
=
´ 1
0 ϕs(x)dBx. Note that by orthonormality {Zs,a}s≥1,a∈[c] is a collection of i.i.d.

N(0, 1) random variables. Hence, from Corollary 1.3 we obtain the following alternative expression
of the limiting distribution of Γ(H,Gn):

Γ(H,Gn)
D→

√
2

(
1− 1

c

)
Z +

1√
c

c−1∑
a=1

∞∑
s=1

λs

(
Z2
s,a − 1

)
D
=

√
2

(
1− 1

c

)
Z +

1√
c

∞∑
s=1

λsξs,
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where {ξs}s≥1 is a collection of i.i.d. χ2
c−1 − (c − 1) random variables which is independent of

Z ∼ N(0, σ2), with

σ2 =
1

4

∑
1≤a̸=b≤|V (H)|
1≤a′ ̸=b′≤|V (H)|

t

Hi

⊗
(a,b),(a′,b′)

H,W

− ∥WH∥2.

This recovers the result in [9, Theorem 1.3].

2. A General Invariance Principle
⟨sec:invariance⟩

For each v ∈ [n] and a ∈ [c], let

X̃v,a =
√
c

(
1{Xv = a} − 1

c

)
. (2.1) ?eq:Xva?

Let {Zv,a}v∈[n],a∈[c] be a collection of i.i.d N(0, 1) and define

Z̃v,a := Zv,a −
1

c

c∑
a=1

Zv,a. (2.2) eq:Zva

We collect some easy facts about the random variables {X̃v,a}v∈[n],a∈[c] and {Z̃v,a}v∈[n],a∈[c] in the
following observation:

⟨obs:XZva⟩Observation 2.1. Let {X̃v,a}v∈[n],a∈[c] and {Z̃v,a}v∈[n],a∈[c] be as defined above. Then the following
hold:

?⟨eq:first_second_moments_match:1⟩?
(a) EX̃v,a = EZ̃v,a = 0, for v ∈ [n], a ∈ [c].

?⟨eq:first_second_moments_match:2⟩? (b) Var(X̃v,a) = Var(Z̃v,a) = 1− 1
c , for v ∈ [n], a ∈ [c].

?⟨eq:first_second_moments_match:3⟩? (c) Cov(X̃v,a, X̃v,b) = Cov(Z̃v,a, Z̃v,b) = −1
c , for v ∈ [n] and a ̸= b ∈ [c].

?⟨eq:independenceuv⟩? (d) {X̃u,a}a∈[c] ⊥ {X̃v,a}a∈[c] and {Z̃u,a}a∈[c] ⊥ {Z̃v,a}a∈[c], for u ̸= v ∈ [n].

Hereafter, denote

X = (Xv,a)v∈[n],a∈[c], X̃ = (X̃v,a)v∈[n],a∈[c], Z = (Zv,a)v∈[n],a∈[c], and Z̃ = (Z̃v,a)v∈[n],a∈[c].

Fix an integer r ≥ 1. Then for a function f : [n]r → R, define

T (f ; X̃) :=
1

n
r
2
√
c

c∑
a=1

∑
s∈[n]r

f(s)

r∏
j=1

X̃sj ,a. (2.3) eq:Tf

Define T (f ;X) and T (f ; Z̃) similarly. Let Sr denote the set of all permutations of [r]. Then define
the symmetrization of f as follows:

f̃(s1, · · · sr) =
1

r!

∑
σ∈Sr

f(sσ(1), · · · , sσ(r)).

For functions f, f ′ : [n]r → R, their inner product is defined as:

⟨f, f ′⟩ := 1

nr

∑
s∈[n]r

f(s)f ′(s).
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and let ∥f∥ :=
√
⟨f, f⟩ be the associated norm. For a s ∈ [n]r, let s denote the (unordered) set

formed by the entries of s. (For example, if s = (4, 2, 5), then s = {2, 4, 5}.) Notice that

⟨f̃ , f̃ ′⟩ =⟨f̃ , f ′⟩ = ⟨f, f̃ ′⟩ = 1

nr

1

r!

∑
s,s′∈[n]r
s=s′

f(s)f ′(s′). (2.4) eq:ip_sym_S_s

We can then define the following bilinear operation:

⟨f, f ′⟩• := ⟨f, f̃ ′⟩

and also the associated pseudo-norm ∥f∥• :=
√
⟨f, f⟩• = ∥f̃∥.

⟨lm:varianceTf⟩Lemma 2.1. Fix integers r, r′ ≥ 1. Then for functions f : [n]r → R and f ′ : [n]r′ → R, the
following hold:

• If r ̸= r′, then

Cov
(
T (f, X̃), T (f ′, X̃)

)
= 0. (2.5) eq:cov_T_f_zero

• If r = r′, then

Cov
(
T (f, X̃), T (f ′, X̃)

)
= E

(
T (f, X̃)T (f ′, X̃)

)
= η · r!⟨f, f ′⟩•,

where η :=
(
1− 1

c

)r
+ (c− 1)

(
−1

c

)r
.

The same holds for Cov(T (f, Z̃), T (f ′, Z̃)).

Proof. Note that for any s ∈ [n]r and a ∈ [c], E(
∏r

j=1 X̃sj ,a) = 0. This implies, recall (2.3),

E[T (f, X̃)] = 0. Hence,

Cov
(
T (f, X̃), T (f ′, X̃)

)
= E

(
T (f, X̃)T (f ′, X̃)

)
=

1

n
r+r′
2 c

∑
a,a′∈[c]

∑
s∈[n]rs′∈[n]r′

f(s)f ′(s′)E

∏
j∈s

X̃sj ,a

∏
j∈s′

X̃s′j ,a
′

 , (2.6) eq:covTf

where s = (s1, s2, . . . , sr) and s′ = (s′1, s
′
2, . . . , s

′
r′), for s ∈ [n]r and s′ ∈ [n]r′ . Observe that if

s ̸= s′ (that is, either s\s′ or s′\s is non-empty), then

E

∏
j∈s

X̃sj ,a

∏
j∈s′

X̃s′j ,a
′

 = 0.

To begin with, suppose r ̸= r′. Then s ̸= s′, for any s ∈ [n]r and s′ ∈ [n]r′ . Hence, in this case
all the terms in (2.6) are zero, and the result in (2.5) follows.

Now, suppose r = r′ and s, s′ ∈ [n]r is such that s = s′. Then

1

c

∑
a,a′∈[c]

E

∏
j∈s

X̃sj ,a

∏
j∈s′

X̃sj ,a′

 =
1

c

∑
a,a′∈[c]

E

∏
j∈s

X̃sj ,aX̃sj ,a′


=

1

c

∑
a∈[c]

E

∏
j∈s

X̃2
sj ,a

+
1

c

∑
a̸=a′∈[c]

E

∏
j∈s

X̃sj ,aX̃sj ,a′


=

(
1− 1

c

)r

+ (c− 1)

(
−1

c

)r

= η.
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Hence, from (2.6),

Cov
(
T (f, X̃), T (f ′, X̃)

)
=

1

nrc

∑
a,a′∈[c]

∑
s∈[n]r,s′∈[n]r

s=s′

f(s)f ′(s′)E

∏
j∈s

X̃sj ,a

∏
j∈s′

X̃sj ,a′


= η · 1

nr

∑
s∈[n]r,s′∈[n]r′

s=s′

f(s)f ′(s′)

= η · r!⟨f, f ′⟩•,

where the last step uses (2.4). □

Next, we show that T (·; X̃) satisfies an invariance principle. Specifically, we show that the

moments of T (·; X̃) and T (·; Z̃) are asymptotically close, for any finite collection of bounded
functions.

⟨ppn:mthd_mmnts⟩
Proposition 2.1. Fix K ≥ 1 and integers r1, r2, . . . , rK ≥ 1. For 1 ≤ k ≤ K, let {f (k)

n }n≥1 be

sequence of functions such that f
(k)
n : [n]rk → [−M,M ], for some M > 0. Then

lim
n→∞

∣∣∣∣∣E
K∏
k=1

T
(
f (k)
n ; X̃

)
− E

K∏
k=1

T
(
f (k)
n ; Z̃

)∣∣∣∣∣ = 0. (2.7) ?eq:mthd_mmnts_main_statement?

Proof. For notational convenience denote,

∆n,K :=

∣∣∣∣∣E
K∏
k=1

T
(
f (k)
n ; X̃

)
− E

K∏
k=1

T
(
f (k)
n ; Z̃

)∣∣∣∣∣ .
Note that

∆n,K =
1

n
r•
2 c

K
2

∣∣∣∣∣∣∣∣∣
∑

a∈[c]K

∑
s(1),...,s(K)

s(k)∈[n]rk

K∏
k=1

f (k)
n (s(k))

E

 K∏
k=1

∏
j∈[n]rk

X̃
s
(k)
j ,ak

− E

 K∏
k=1

∏
j∈[n]rk

Z̃
s
(k)
j ,ak


∣∣∣∣∣∣∣∣∣ ,

where r• =
∑K

k=1 rk, a = (a1, a2, . . . , aK) ∈ [c]K and s(k) = (s
(k)
1 , s

(k)
2 , . . . , s

(k)
rk ) ∈ [n]rK , for

1 ≤ k ≤ K. Using the fact that |f (k)
n | ≤ M , for 1 ≤ k ≤ K, gives

∆n,K ≤ MK

n
1
2

∑K
k=1 rkc

K
2

∑
a∈[c]K

∑
s(1),...,s(K)

s(k)∈[n]rk

∣∣∣∣∣∣E
 K∏

k=1

∏
j∈[n]rk

X̃
s
(k)
j ,ak

− E

 K∏
k=1

∏
j∈[n]rk

Z̃
s
(k)
j ,ak

∣∣∣∣∣∣ . (2.8) eq:mthd_mmnts_difference

Given a ∈ [c]K and S := (s(1), · · · , s(K)), such that s(k) ∈ [n]rk , for 1 ≤ k ≤ K, define the
edge-colored hypergraph FS,a = (V (FS,a), E(FS,a)) as follows:

V (FS,a) :=
K⋃
k=1

s(k) and E(FSK ,a) := {s(1), . . . , s(K)},



MONOCHROMATIC SUBGRAPHS IN DENSE MULTIPLEX NETWORKS 13

and the color of the hyperedge s(k) is ak, for 1 ≤ k ≤ K. Also, define

X̃FS,a
:=

K∏
k=1

∏
j∈[n]rk

X̃
s
(k)
j ,ak

and Z̃FS,a
:=

K∏
k=1

∏
j∈[n]rk

Z̃
s
(k)
j ,ak

.

The following lemma records 2 crucial properties of EX̃FS,a
and EZ̃FS,a

.

⟨lm:XZ⟩Lemma 2.2. For j ∈ V (FS,a), denote by dj the degree of vertex j ∈ V (FS,a). Then the following
hold:

• If there exists j ∈ V (FS,a) such that dj = 1, then

EX̃FS,a
= EZ̃FS,a

= 0.

• If dj = 2, for all j ∈ V (FS,a), then

EX̃FS,a
= EZ̃FS,a

.

Proof. Note that

EX̃FS,a
= E

 ∏
j∈V (FS,a)

c∏
a=1

X̃
ℓj,a
j,a

 =
∏

j∈V (FS,a)

E

(
c∏

a=1

X̃
ℓj,a
j,a

)
, (2.9) eq:XFs

where ℓj,a be the number of hyperedges with color a ∈ [c] containing the vertex j ∈ V (FS,a). Now,
if j ∈ V (FS,a) is such that dj = 1, then there exists b ∈ [c] such that ℓj,b = 1 and ℓj,a = 0, for all
a ∈ [c]\b. This means,

E

(
c∏

a=1

X̃
ℓj,a
j,a

)
= EX̃j,b = 0

and, consequently, EX̃FS,a
= 0. By the same argument we also have, EZ̃FS,a

= 0.
Next, suppose dj = 2, for all j ∈ V (FS,a). Then there are 2 possibilities:

• There exists b ∈ [c] such that ℓj,b = 2 and ℓj,a = 0, for all a ∈ [c]\{b}. This means,

E

(
c∏

a=1

X̃
ℓj,a
j,a

)
= EX̃2

j,b = 1− 1

c
,

by Observation 2.1. By the same argument,

E

(
c∏

a=1

Z̃
ℓj,a
j,a

)
= EZ̃2

j,b = 1− 1

c
.

• There exists b ̸= b′ ∈ [c] such that ℓj,b = ℓj,b′ = 1 and ℓj,a = 0, for all a ∈ [c]\{b, b′}. This
means,

E

(
c∏

a=1

X̃
ℓj,a
j,a

)
= EX̃j,bX̃j,b′ = −1

c
,

by Observation 2.1. By the same argument,

E

(
c∏

a=1

Z̃
ℓj,a
j,a

)
= EZ̃j,bZ̃j,b′ = −1

c
.
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Hence, if dj = 2, then

E

(
c∏

a=1

X̃
ℓj,a
j,a

)
= E

(
c∏

a=1

Z̃
ℓj,a
j,a

)
Hence, taking product over j ∈ V (FS,a) (recall (2.9)), gives EX̃FS,a

= EZ̃FS,a
. □

The next lemma gives bounds on EX̃FS,a
and EZ̃FS,a

.

⟨lm:expectationXZbound⟩Lemma 2.3. For any a = (a1, a2, . . . , aK) ∈ [c]K and S = (s(1), · · · , s(K)), with s(k) ∈ [n]rk , for
1 ≤ k ≤ K, we have

EX̃FS,a
≲K,c 1, (2.10) eq:mthd_mmnts_product_of_vs_final

where ν(FS,a) is the number of connected components of FS,a. Moreover, EZ̃FS,a
≲r1,...,rK 1.

Proof. To begin with, define Cj := {a ∈ [c] : ℓj,a ≥ 1}, for j ∈ V (FS,a). Then, for each j ∈ V (FS,a),∣∣∣∣∣E
(

c∏
a=1

X̃
ℓj,a
j,a

)∣∣∣∣∣ =
∣∣∣∣∣∣E
∏

a∈Cj

X̃
ℓj,a
j,a

∣∣∣∣∣∣
= c

1
2

∑
a∈Cj

ℓj,a

∣∣∣∣∣∣E
∏
a∈Cj

(
1{Xj = a} − 1

c

)ℓj,a

∣∣∣∣∣∣
≤ c

dj
2 E

∏
a∈Cj

∣∣∣∣1{Xj = a} − 1

c

∣∣∣∣ℓj,a
= c

dj
2

c∑
b=1

P(Xj = b)

(
1− 1

c

)ℓj,b ∏
a∈Cj\{b}

1

cℓj,a

≤ c
dj
2
−1

c∑
b=1

c
−

∑
a∈Cj\{b}

ℓj,a

≤ c
dj
2
−1
∑
b∈Cj

c
−

∑
a∈Cj\{b}

ℓj,a
+ c

dj
2
−1
∑
b/∈Cj

c
−

∑
a∈Cj

ℓj,a
(2.11) eq:TC

≤ |Cj |c
dj
2
−|Cj | + c

dj
2
−|Cj | ≲K c

dj
2
−|Cj |, (2.12) eq:TK

where (2.11) uses ℓj,a ≥ 1, for a ∈ Cj , and (2.12) uses |Cj | ≤ K, for j ∈ V (FS,a). Hence, from (2.9),∣∣∣EX̃S,a

∣∣∣ ≲ c
1
2

∑
j∈V (FS,a) dj−

∑
j∈V (FS,a) |Cj | = c

1
2

∑
k∈[K] rk−

∑
j∈V (FS,a)(|Cj |−1)−|V (FS,a)| ≲K,c 1.

This proves (2.10).

Next, we bound EZ̃FS,a
. First, observe that for each j ∈ V (FS,a),∣∣∣∣∣E

(
c∏

a=1

Z̃
ℓj,a
j,a

)∣∣∣∣∣ ≤ E
∏
a∈Cj

∣∣∣∣∣Zj,a −
1

c

c∑
a=1

Zj,a

∣∣∣∣∣
ℓj,a

≤
∏
a∈Cj

E

∣∣∣∣∣Zj,a −
1

c

c∑
a=1

Zj,a

∣∣∣∣∣
ℓj,a|Cj |

 1
Cj

(by Hölder’s inequality)
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≤
∏
a∈Cj

(1− 1

c

) ℓj,a|Cj |
2

E |N(0, 1)|ℓj,a|Cj |


1
Cj

≤
∏
a∈Cj

(
E |N(0, 1)|ℓj,a|Cj |

) 1
Cj ≲K 1,

since ℓj,a ≤ K and |Cj | ≤ K, for j ∈ V (FS,a). This implies,

|EZ̃FS,a
| =

∣∣∣∣∣∣E
 ∏

j∈V (FS,a)

c∏
a=1

Z̃
ℓj,a
j,a

∣∣∣∣∣∣ =
∏

j∈V (FS,a)

∣∣∣∣∣E
(

c∏
a=1

Z̃
ℓj,a
j,a

)∣∣∣∣∣ ≲r1,r2,...,rK 1,

since |V (FS,a)| ≤
∑K

k=1 rk. This completes the proof of Lemma 2.3. □

Now, let F be the set of colored hypergraphs with the following properties:

• F ∈ F is a hypergraph with most
∑K

k=1 rk vertices and at most K hyperedges and every
hyperedge of F is assigned a color from a set of size at most K.

• all vertices of F have degree at least two, and
• some vertex of F has degree at least 3.

Note that for F ∈ F there are O(n|V (F )|) terms in the joint sum (2.8) such that FS,a is isomorphic
to F . This implies, from (2.8) and Lemma 2.2,

∆n,K ≲M,K,c
1

n
1
2

∑K
k=1 rk

∑
F∈F

n|V (F )||EX̃FS,a
− EZ̃FS,a

|

≲M,K,c

∑
F∈F

n|V (F )|− 1
2

∑K
k=1 rk . (2.13) eq:mthd_mmnts_sum_c_n_power

Note that
∑K

k=1 rk =
∑

e∈E(F ) |e|. Also, for F ∈ F , we have that dj ≥ 2 for all j ∈ V (F ) with

strict inequality for some j. Therefore,

1

2

K∑
k=1

rk =
1

2

∑
e∈E(F )

|e| = 1

2

∑
e∈V (F )

dj > |V (F )|.

Hence, each term in (2.13) is o(1). Since |F| ≲K,c 1, the result in Proposition 2.1 now follows. □

3. Proof of Theorem 1.1
⟨sec:jointTHGnpf⟩

Recall the definition of T (H,Gn) from (1.2), which is the number of monochromatic copies of H
in Gn:

T (H,Gn) =
1

|Aut(H)|
∑

s∈[n]|V (H)|

∏
(a,b)∈E(H)

asasb(Gn)1{X=s}. (3.1) ?eq:recall_T_H_G_n?

We begin by rewriting T (H,Gn) in terms of T (·, X̃). To this end, for J = {i1 < · · · < i|J |} ⊆
[|V (H)|] and s ∈ [n]|V (H)|, denote sJ = (si1 , · · · , si|J|).

⟨lm:T_H_G_n_multinomial_expansion⟩Lemma 3.1. For J = {i1 < · · · < i|J |} ⊆ [V (H)], define fGn
H,J : [n]|J | → [0, 1] as follows:

fGn
H,J(t) :=

1

n|V (H)|−|J |

∑
s∈[n]|V (H)|

sJ=t

∏
(a,b)∈E(H)

asasb(Gn). (3.2) eq:fH
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Then

T (H,Gn)− E(T (H,Gn)) =
1

|Aut(H)|
∑

J⊆V (H)
|J |≥2

T
(
fGn
H,J ; X̃

) n|V (H)|− |J|
2

c|V (H)|− |J|
2
− 1

2

. (3.3) eq:expanded_T_H_G_n

Proof. Notice that

1{X=s} =

c∑
a=1

|V (H)|∏
j=1

1{Xsj = a}

=
c∑

a=1

|V (H)|∏
j=1

(
1{Xsj = a} − 1

c
+

1

c

)

=
c∑

a=1

∑
J⊆V (H)

∏
j∈J

(
1{Xsj = a} − 1

c

)
1

c|V (H)|−|J |

=

c∑
a=1

∑
J⊆V (H)

∏
j∈J

X̃sj ,a
1

c|V (H)|− |J|
2

. (3.4) eq:indicator_x_equal_s

Then recalling (2.3) we have,

T (fGn
H,J ; X̃) =

1

n|V (H)|− |J|
2
√
c

c∑
a=1

∑
t∈[n]|J|

∑
s∈[n]|V (H)|

sJ=t

∏
(a,b)∈E(H)

asasb(Gn)
∏
j∈J

X̃tj ,a

=
1

n|V (H)|− |J|
2
√
c

c∑
a=1

∑
s∈[n]|V (H)|

∏
(a,b)∈E(H)

asasb(Gn)
∏
j∈J

X̃sj ,a. (3.5) eq:THfGn

Hence,

1

|Aut(H)|
∑

J⊆V (H)

T
(
fGn
H,J ; X̃

) n|V (H)|− |J|
2

c|V (H)|− |J|
2
− 1

2

=
1

|Aut(H)|
∑

J⊆V (H)

c∑
a=1

∑
s∈[n]|V (H)|

∏
(a,b)∈E(H)

asasb(Gn)
∏
j∈J

X̃sj ,a
1

c|V (H)|− |J|
2

=
1

|Aut(H)|
∑

s∈[n]|V (H)|

∏
(a,b)∈E(H)

asasb(Gn)1{X=s}, (3.6) eq:THfGnJsum

where the last step uses (3.4).
Now, observe that, if J = {j0}, for some j0 ∈ V (H),

c∑
a=1

∏
j∈J

(
1{Xsj = a} − 1

c

)
=

c∑
a=1

(
1{Xsj0

= a} − 1

c

)
= 0.

This means (recall (3.5)) that ∑
J⊆V (H)
|J |=1

T
(
fGn
H,J ; X̃

)
= 0. (3.7) eq:THfGnJone
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Also, notice that when J = ∅,

1

|Aut(H)|
T
(
fGn
H,∅; X̃

) n|V (H)|

c|V (H)|− 1
2

= E(T (H,Gn)). (3.8) eq:THfGnJempty

Combining (3.6), (3.7), and (3.8) and rearranging the sums the result in Lemma 3.1 follows. □

Now, let {Ur}r∈V (H) be a collection of i.i.d uniform random variables on [0, 1]. Define the
counterpart of WH for finite n as follows:

W̃Gn
H (x, y) :=

1

2

∑
1≤u̸=v≤|V (H)|

E

1{An}
∏

(i,j)∈E(H)

WGn(Ui, Uj)

∣∣∣∣∣∣Zu = x, Zv = y

 (3.9) eq:WHGnxy

where An = {(⌈nUr⌉)r∈V (H) ∈ V (Gn)|V (H)|} is the event that the variables {Ur}r∈V (H) fall in
distinct intervals when [0, 1] is partitioned in a grid of size 1/n. Then we define

Q2(H,Gn) :=
1

n
√
c

c∑
a=1

∑
1≤u̸=v≤|V (Gn)|

W̃Gn
H

(u
n
,
v

n

)
Z̃u,aZ̃v,a, (3.10) eq:QHGn

where {Z̃v,a}v∈V (Gn),a∈[c] is defined in (2.2). The following lemma shows that Γ(H,Gn) and
Q2(H,Gn) have the same limiting distribution.

⟨lem:Gamma_equal_Q_2⟩Lemma 3.2. Let Γ(H,Gn) and Q2(H,Gn) be as defined in (1.10) and (3.10), respectively. Then

Q2(H,Gn) = T

 ∑
J⊆V (H)
|J |=2

fGn
H,J ; Z̃

 . (3.11) eq:Q2HGnW

Also, as n → ∞,

Γ(H,Gn) = T

 ∑
J⊆V (H)
|J |=2

fGn
H,J ; X̃

+ oL2(1). (3.12) eq:Gamma_eq_Gamma_2

Proof. Recalling (3.2) and (3.9) gives, for 1 ≤ u ̸= v ≤ n,∑
J⊆V (H)
|J |=2

fGn
H,J(u, v) =

1

n|V (H)|−2

∑
s∈[n]|V (H)|
sJ={u,v}

∏
(a,b)∈E(H)

asasb(Gn) = W̃Gn
H (x, y) ,

for x ∈ [un ,
u+1
n ] and y ∈ [ vn ,

v+1
n ]. Therefore,

T

 ∑
J⊆V (H)
|J |=2

fGn
H,J ; Z̃

 =
1

n
√
c

c∑
a=1

∑
1≤u̸=v≤|V (Gn)|

W̃Gn
H

(u
n
,
v

n

)
Z̃u,aZ̃v,a = Q2(H,Gn).

This proves (3.11).
Next, recalling (1.10) and from (3.3) we have,

Γ(H,Gn) =
c|V (H)|− 3

2

n|V (H)|−1
{T (H,Gn)− E(T (H,Gn))}
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=
1

|Aut(H)|
∑

J⊆V (H)
|J |≥2

T
(
fGn
H,J ; X̃

) c
|J|
2
− 1

2

n
|J|
2
−1

. (3.13) eq:GammaHGnJsum

Note that, for any J ⊆ V (H), with |J | ≥ 3, ET (fGn
H,J ; X̃) = 0 and, from Lemma 2.1,

1

n|J |−2
VarT (fGn

H,J ; X̃) =
1

n|J |−2
∥f̃Gn

H,J∥
2
2 = o(1),

since

∥f̃Gn
H,J∥

2
2 =

1

n2|V (H)|−|J |

∑
t∈[V (Gn)]|J|

 1

|J |!
∑

σ∈S|J|

∑
s∈[V (Gn)]|V (H)|

sJ=σ(t)

∏
(a,b)∈E(H)

asasb(Gn)


2

≤ 1,

where σ(t) = (tσ(1), . . . , tσ(|J |)). Hence, T (fGn
H,J) = oL2(1), for all J ⊆ such that |J | ≥ 3. This

implies, from (3.13),

Γ(H,Gn) =
c|V (H)|− 3

2

n|V (H)|−1

∑
J⊆V (H)
|J |=2

T
(
fGn
H,J ; X̃

) n|V (H)|− |J|
2

c|V (H)|− |J|
2
− 1

2

+ oL2(1)

= T

 ∑
J⊆V (H)
|J |=2

fGn
H,J ; X̃

+ oL2(1). (3.14) eq:Gamma_eq_Gamma_2

This proves (3.14) and completes the proof of Lemma 3.2. □

The following lemma represents Q2(H,Gn) as a sum of independent bivariate stochastic integrals.

?⟨lem:from_correlated_to_independent⟩?Lemma 3.3. Let {B(1)(t), B(2)(t), . . . , B(c−1)(t)}t∈[0,1] be a collection of independent Brownian
motions on [0, 1] and Q2(H,Gn) be as defined in (3.10). Then

Q2(H,Gn)
D
=

1√
c

c−1∑
a=1

ˆ
[0,1]2

W̃Gn
H (x, y)dB(a)

x dB(a)
y .

Proof. Let {Zv,a}v∈[n],a∈[c] be a collection of i.i.d N(0, 1) random variables. For 1 ≤ v ≤ n, let

Zv = (Zv,1, Zv,2, . . . , Zv,c)
⊤. Then, for 1 ≤ v ≤ n, MZv = Z̃v, where Z̃v = (Z̃v,1, Z̃v,2, . . . , Z̃v,c)

⊤,

where M = I − 1
c1

⊤1, where 1 is the vector of ones of length c. Note that M⊤M = M and M
has c− 1 non-zero eigenvalues all of which are 1. Hence, we can write,

Q2(H,Gn) =
1

n
√
c

c∑
a=1

∑
1≤u̸=v≤|V (Gn)|

W̃Gn
H

(u
n
,
v

n

)
Z̃u,aZ̃v,a

=
1

n
√
c

∑
1≤u̸=v≤|V (Gn)|

W̃Gn
H

(u
n
,
v

n

)
Z⊤

u M⊤MZv

=
1

n
√
c

∑
1≤u̸=v≤|V (Gn)|

W̃Gn
H

(u
n
,
v

n

)
Z⊤

u MZv
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D
=

1

n
√
c

∑
1≤u̸=v≤|V (Gn)|

W̃Gn
H

(u
n
,
v

n

) c−1∑
a=1

Yu,aYv,a

(where {Yv,a}v∈[n],a∈[c] are i.i.d. N(0, 1))

D
=

1√
c

c−1∑
a=1

ˆ
[0,1]2

W̃Gn
H (x, y)dB(a)

x dB(a)
y ,

where the last equality holds in distribution because W̃Gn
H (x, y) is a step function which is zero on

the diagonal. □

With the above preparations, we proceed with the proof of Theorem 1.1. For this, suppose

H = {H1, H2, . . . ,Hd} is a finite collection of graphs and Gn = (G
(1)
n , G

(2)
n , . . . , G

(d)
n ) be a sequence

of d-multiplexes converging in joint cut-norm to W = (W1,W2, . . . ,Wd). By Lemma 3.2,

Γ(H,Gn) = Q2(H,Gn) + oL2(1),

where Γ(H,Gn) is defined in (1.9) and

Q2(H,Gn) = (Q2(H1, G
(1)
n ), Q2(H1, . . . , Q2(Hd, G

(d)
n ))⊤.

Therefore, to prove Theorem 1.1 it suffices to derive the limiting distribution of Q2(H,Gn).
To this end, invoking the Cramér-Wold device, it suffices to derive the limiting distribution of
α⊤Q2(H,Gn), for any vector α = (α1, α2, . . . , αd) ∈ Rd. Note that

α⊤Q2(H,Gn) =

d∑
i=1

αiQ2(Hi, G
(i)
n ) =

1√
c

c−1∑
a=1

I
(a)
2

(
d∑

i=1

αiW̃
G

(i)
n

Hi

)
, (3.15) eq:sum_of_stoch_int_tilde

where I
(a)
2 (F ) :=

´
[0,1]2 F (x, y)dB

(a)
x dB

(a)
y , for any bounded symmetric kernel F ∈ W1. Observe

that for any 1 ≤ i ≤ d,

∥W̃G
(i)
n

Hi
−WG

(i)
n

Hi
∥22 ≤ |V (Hi)|2P(Ac

n).

Since (⌈nZu⌉)u∈V (H) is a uniform random vector over V (Gn)
V (H),

P(An) =
n(n− 1) · · · (n− |V (H)|)

n|V (H)| → 1.

Hence, (3.15) has the same limiting distribution as

1√
c

c−1∑
a=1

I
(a)
2

(
d∑

i=1

αiW
G

(i)
n

Hi

)
. (3.16) eq:sum_of_stoch_int

Now, let

Wα,n :=

d∑
i=1

αiW
G

(i)
n

Hi
and Wα :=

d∑
i=1

αiW
(i)
Hi

. (3.17) eq:WGnalpha

Since Gn converges to W in joint cut-metric, there is a sequence of invertible measure preserving
maps ϕn : [0, 1] → [0, 1] such that

d∑
i=1

∥(WG
(i)
n )ϕn −W (i)∥□ → 0.
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Define the map ηHi : W → WHi , for 1 ≤ i ≤ d. Notice that ηHi((W
G

(i)
n )ϕn) = ηHi(W

G
(i)
n )ϕn . Then

by Lemma A.1, as n → ∞,

∥W ϕn
α,n −Wα∥□ → 0. (3.18) eq:Walphaconvergence

Using (3.17) we can rewrite (3.16) as

1√
c

c−1∑
a=1

I
(a)
2

(
d∑

i=1

αiW
G

(i)
n

Hi

)
=

1√
c

c−1∑
a=1

I
(a)
2 (Wα,n)

D
=

1√
c

c−1∑
a=1

I
(a)
2

(
W ϕn

α,n

)
=

1√
c

c−1∑
a=1

I
(a)
2 (W ϕn

α,n −Wα) +
1√
c

c−1∑
a=1

I
(a)
2 (Wα). (3.19) eq:QHGnWlinear

By Lemma B.1 the two terms in the RHS above are asymptotically independent, hence, it suffices
to derive the limiting distribution of the first term.

⟨lm:I2clt⟩Lemma 3.4. As n → ∞,

1√
c

c−1∑
a=1

I
(a)
2 (W ϕn

α,n −Wα)
D→

√
2

(
1− 1

c

)
N(0,α⊤Σα), (3.20) eq:l2clt

where Σ is defined in Theorem 1.1.

Proof. By the spectral theorem for bounded symmetric kernels (see [38, Section 7.5]),

∆α,n(x, y) := W ϕn
α,n(x, y)−Wα(x, y) =

∞∑
s=1

λ(n)
s ϕ(n)

s (x)ϕ(n)
s (y),

where {λ(n)
s }s≥1 are the eigenvalues and {ϕ(n)

s }s≥1 are a set of orthonormal eigenvectors for the
operator

T∆α,nf(x) =

ˆ 1

0
∆α,n(x, y)f(y)dy.

Define, for s ≥ 1,

ξs =

c−1∑
a=1

(ˆ 1

0
ϕ(n)
s (x)dB(a)

x

)2

− (c− 1).

By orthonormality, the variables {ξs}s≥1 have independent χ2
c−1 − (c− 1) distributions. Hence,

1√
c

c−1∑
a=1

I
(a)
2 (W ϕn

α,n −Wα)
D
=

1√
c

∞∑
s=1

λ(n)
s ξs.

The result in (3.20) then follows from Lemma C.1, if we show the following:

lim
n→∞

max
s≥1

|λ(n)
s | = 0 and lim

n→∞

∑
s≥1

|λ(n)
s |22 = α⊤Σα. (3.21) eq:lambdamaxsum
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To show the first condition in (3.21), we will use the identity
∑

s≥1(λ
(n)
s )4 = t(C4,∆n,α) (see [38,

Section 7.5]), where C4 denotes the cycle of size 4. This implies,

max
s≥1

|λ(n)
s |4 ≤

∞∑
s=1

(λ(n)
s )4 = t(C4,∆n,α) ≤ ∥∆n,α∥□ → 0,

by (3.18).
We now prove the second condition in (3.21). For this, observe that

lim
n→∞

∥∆n,α∥22 = lim
n→∞

∥W ϕn
α,n −Wα∥22

= lim
n→∞

∥Wα,n∥22 − 2 lim
n→∞

⟨Wα,n,Wα⟩+ ∥Wα∥22

= lim
n→∞

∥Wα,n∥22 − ∥Wα∥22,

using the fact that limn→∞⟨Wα,n,Wα⟩ = ∥Wα∥22, which follows from (3.18) and by invoking [38,
Lemma 8.22]. Also,

lim
n→∞

∥Wα,n∥22 = lim
n→∞

∥∥∥∥∥
d∑

i=1

αiW
G

(i)
n

Hi

∥∥∥∥∥
2

2

= lim
n→∞


d∑

i=1

α2
i ∥W

G
(i)
n

Hi
∥22 +

∑
1≤i ̸=j≤d

αiαj⟨WG
(i)
n

Hi
,WG

(j)
n

H(j) ⟩


=

d∑
i=1

α2
i τ(Hi,Wi) +

∑
1≤i ̸=j≤d

αiαjρij ,

where τ(Hi,Wi) is as defined in Lemma 3.5 and ρij is as in (1.12). Combining (??), (??), and
observing that

∥Wα∥22 =
d∑

i=1

α2
i ∥W

(i)
Hi

∥22 +
∑

1≤i ̸=j≤d

αiαj⟨W (i)
Hi

,W
(j)

H(j)⟩,

the second condition in (3.21) follows. This completes the proof of Lemma 3.4. □

The proof of Lemma 3.4 uses the following result about the limiting value of ∥WGn
H ∥22.

⟨lm:WGnHvariance⟩Lemma 3.5. For any fixed graph H = (V (H), E(H)) and a sequence of graphs {Gn}n≥1 converging
to a graphon W ,

lim
n→∞

∥WGn
H ∥22 =

1

4

∑
1≤u̸=v≤|V (H)|
1≤u′ ̸=v′≤|V (H)|

t

H
⊗

(u,v),(u′,v′)

H,W

 := τ(H,W ).

Moreover, gor any two fixed graphs H1 = (V (H1), E(H1)) and H2 = (V (H2), E(H2)) and a sequence
of graphs {Gn}n≥1 converging to a graphon W ,

lim
n→∞

⟨WGn
H1

,WGn
H2

⟩ = 1

4

∑
1≤u̸=v≤|V (H1)|
1≤u′ ̸=v′≤|V (H2)|

t

H1

⊗
(u,v),(u′,v′)

H2,W

 . (3.22) lm:WGnHcovariance
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Proof. Let H ′ be an isomorphic copy of H. Then

∥WGn
H ∥22 =

ˆ
[0,1]2

1
2

∑
1≤a̸=b≤|V (H)|

E

 ∏
(i,j)∈E(H)

WGn(Ui, Uj)

∣∣∣∣∣∣ Ua = x, Ub = y

2

dxdy

=

ˆ
[0,1]2

1

4

∑
(a,b)∈V (H)2

(a′,b′)∈V (H′)2

E

 ∏
(i,j)∈E(H)∪E(H′)

WGn(Ui, Uj)

∣∣∣∣∣∣
(
Ua

Ub

)
=

(
Ua′

Ub′

)
=

(
x
y

) dxdy

=
1

4

∑
1≤a̸=b≤|V (H)|
1≤a′ ̸=b′≤|V (H)|

t

H
⊗

(a,b),(a′,b′)

H,WGn

→ τ(H,W ).

The result in (3.22) can be proved similarly. □

To complete the proof of Theorem 1.1, recalling the representation in (3.19). Then applying
Lemma 3.4 and Lemma B.1 shows that

1√
c

c−1∑
a=1

I
(a)
2

(
d∑

i=1

αiW
G

(i)
n

Hi

)
D→

√
2

(
1− 1

c

)
α⊤Z +

1√
c

c−1∑
a=1

I
(a)
2 (Wα),

where Z is as defined Theorem 1.1 and the 2 terms in the RHS are independent. Finally, recall
(from (3.15) and (3.16)) that the LHS above has the same limiting distribution as α⊤Q2(H,Gn).
Hence, by the Cramér-Wold device the result in Theorem 1.1 follows. □

4. Examples
⟨sec:examples⟩

In this section we illustrate our results in various examples. A few of the examples will involve
random multiplexes. To this end, it is worth noting that Theorems 1.1 can be easily extended to
random multiplexes, when the limits in (1.8) and (1.12) hold in probability, under the assumption
that the multiplex and its coloring are jointly independent (see for example Lemma in []).

?⟨ex:correlated_erdos_renyi⟩?Example 4.1. A natural example of a random multiplex is the correlated Erdős-Rényi model
G(n, p, q, ρ), which is a 2-multiplex where the edges are dependent across the different layers. This
model emerged from the study of network privacy [55] and is the basic underlying model in graph

matching problems (see [42, 43] and the references therein). Specifically, G(n, p, q, ρ) = (G
(1)
n , G

(2)
n )

is a 2-multiplex with common vertex set [n], where independently for every 1 ≤ i < j ≤ n, we have

P((i, j) ∈ E(G(1)
n )) = p, P((i, j) ∈ E(G(2)

n )) = q

and

P((i, j) ∈ E(G(1)
n ) ∩ E(G(2)

n )) = ρ+ pq := p1,2,

for p, q ∈ (0, 1) and ρ ∈ [0,min{p, q} − pq). In this case, (G
(1)
n , G

(2)
n ) converges jointly to (W1,W2),

where W1 ≡ p and W2 ≡ q. Therefore, for any 2 graphs H1 and H2,

((W1)H1 , (W2)H2) =

((
|V (H1)|

2

)
p|E(H1)|,

(
|V (H2)|

2

)
q|E(H2)|

)
.

Moreover,

lim
n→∞

⟨WG
(1)
n

H1
,WG

(2)
n

H2
⟩ = ρ12,
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in probability. Then by Theorem 1.1, under the assumption that the coloring is independent of the
multiplex, (

Γ(H1, G
(1)
n )

Γ(H2, G
(2)
n )

)
D−→

√
2

(
1− 1

c

)(
Z1

Z2

)
+

1√
c


(
|V (H1)|

2

)
p|E(H1)|(

|V (H2)|
2

)
q|E(H2)|

 ξ,

with ξ ∼ χ2
c−1 − (c− 1) which is independent of (Z1, Z2) ∼ N2(0,Σ) where

Σ =

(
p2|E(H1)|−1(1− p)|E(H1)|2 ρ · p|E(H1)|−1q|E(H2)|−1|E(H1)|E(H2)|

ρ · p|E(H1)|−1q|E(H2)|−1|E(H1)|E(H2)| q2|E(H2)|−1(1− q)|E(H2)|2

)
.

Observe that when ρ = 0, that is, the 2 layers are independent, the covariance matrix Σ becomes
diagonal.

Next, we construct an example where the Gaussian component of the limit has a degenerate
covariance matrix.

?⟨ex:correlated_erdos_renyi_triangle_complementar⟩?
Example 4.2. Suppose G

(1)
n ∼ G(n, p), where p ∈ (0, 1), and consider the multiplex Gn =

(G
(1)
n , G

(2)
n ), where G

(2)
n is the complement graph of G

(1)
n . Then, by Theorem 1.1, when c = 2,(

Γ(K3, G
(1)
n )

Γ(K3, G
(2)
n )

)
D−→
(
Z1

Z2

)
+

3√
2

(
p3

(1− p)3

)
ξ,

with ξ ∼ χ2
1 − 1 which is independent of (Z1, Z2) ∼ N2(0,Σ), where

Σ =

(
9p5(1− p) −9p3(1− p)3

−9p3(1− p)3 9(1− p)5p

)
.

Note that the rank of Σ is 1.

The next example shows that marginal convergence (in the cut-distance) of the graphs in the
different layers of a multiplex Gn and the convergence of the pairwise overlaps (1.12) are not enough
for the convergence of the joint distribution of Γ(H,Gn). One needs to assume that the graphs in
the different layers converge jointly in the cut-distance (as in (1.8)) for the limiting distribution of
Γ(H,Gn) to exist.

⟨ex:joint_convergence_necessary⟩
Example 4.3. Let A1, A2, A3, A4 be 4-disjoint sets of size n. Denote by B

(s,s+1)
n the complete

bipartite graph between the sets As and As+1, for 1 ≤ s ≤ 3 (see Figure 2). Define3

G(1)
n =

3⋃
s=1

B(s,s+1)
n , G(2)

n = B(1,2)
n , and G(3)

n = B(2,3)
n .

(Note that, in other words, Gn is the n-blow-up of a path with 4 vertices [].) Now consider the
following 2 sequences of the multiplexes:

Gn = (G(1)
n , G(2)

n ) and G̃n = (G(1)
n , G(3)

n ).

Note that the graph G
(1)
n converges to the graphon W1234 in Figure 3 (a) and the graphs G

(2)
n and

G
(3)
n converge to the graphon W23 in Figure 3 (b). Hence, marginally the graphs in the 2 layers of

3For 2 graphs G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)), denote by G1

⋃
G2 =

(V (G1)
⋃

V (G2), E(G1)
⋃

E(G2)).
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A1 A3 A4A2

G(1)
n

G(3)
n

G(2)
n

B(1,2)
n B(2,3)

n B(3,4)
n

Figure 2. The graphs G
(1)
n , G

(2)
n , and G

(3)
n in Example 4.3.

⟨fig:graphlayers⟩

Gn and and the graphs in the 2 layers of G̃n converge to the same limits. Moreover,

lim
n→∞

2|E(G
(1)
n ) ∩ E(G

(2)
n )|

n2
= lim

n→∞

2|E(G
(1)
n ) ∩ E(G

(3)
n )|

n2
=

1

8
,

that is, (1.13) converges to the same limit for both Gn and G̃n.

(a) (b)

Figure 3. The graphons W1234 and W23 in Example 4.3.
⟨fig:bipartiteexample⟩

Hence, the premises of Corollary 1.2 hold for both Gn and G̃n. In particular, with c = 2, we get

(
Γ(K2, G

(1)
n )

Γ(K2, G
(2)
n )

)
D−→


ˆ
[0,1]2

W1234(x, y)dBxdByˆ
[0,1]2

W23(x, y)dBxdBy

 D
=

1

4

(
Z1Z2 + Z2Z3 + Z3Z4

Z1Z2

)
=:

(
Y
Y ′

)
(4.1) eq:Gn12
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and(
Γ(K2, G

(1)
n )

Γ(K2, G
(3)
n )

)
D−→


ˆ
[0,1]2

W1234(x, y)dBxdByˆ
[0,1]2

W23(x, y)dBxdBy

 D
=

1

4

(
Z1Z2 + Z2Z3 + Z3Z4

Z2Z3

)
=:

(
Y
Y ′′

)
, (4.2) eq:Gn13

where Z1, Z2, Z3, Z4 are i.i.d. N(0, 1) and {Bt}t∈[0,1] is the standard Brownian Motion on [0, 1].

Note that the limiting distributions in (4.1) and (4.2). In particular, E(Y − Y ′)4 = 36
44

which is

different from E(Y − Y ′′)4 = 24
44
. The reason for this is that there is no common permutation of [n]

for which (G
(1)
n , G

(2)
n , G

(3)
n ) jointly converges in the cut-distance.
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Appendix A. Continuity of the 2-Point Conditional Kernel

Recall the definition of the 2-point conditional kernel from (1.11). Note that WH is symmetric
and bounded, but can take values greater 1, hence, WH ∈ W1, where W1 is the space of bounded,
symmetric, measurable functions from [0, 1]2 → [0,∞). The topology generated by the cut-distance
(1.7) (extended naturally to the space W1) is the same as the topology generated by the following
norm (see [38, Lemma 8.11]):

||W1 −W2||1→∞ := sup
f,g:[0,1]→[−1,1]

∣∣∣∣∣
ˆ
[0,1]2

(W1(x, y)−W2(x, y)) f(x)g(y)dxdy

∣∣∣∣∣ ,
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for W1,W2 ∈ W1. The next lemma shows that the map W → WH is Lipschitz in the ∥ · ∥1→∞
norm and, hence, the cut-distance ∥ · ∥□. This, in particular, means that if {Gn}n≥1 converges to

a graphon W , then WGn
H converges in cut-norm to WH .

⟨lem:W_H_lipschitz⟩Lemma A.1. The mapping ηH : W 7→ WH defined on W1 is Lipschitz under ∥ · ∥∞→1 and, hence,
under ∥ · ∥□.

Proof. Let {Ur}r∈V (H) be a collection i.i.d. Unif[0, 1] random variables. To show the map ηH is
Lipschitz, it suffices to prove

∥(W +R)H −RH∥∞→1 ≲H ∥R∥∞→1, (A.1) eq:WRHsquare

for W,R ∈ W1. To this end, fix 1 ≤ a ̸= b ≤ |V (H)| and note that

∆a,b(x, y) := E

 ∏
(i,j)∈E(H)

(W (Ui, Uj) +R(Ui, Uj))−
∏

(i,j)∈E(H)

W (Ui, Uj)

∣∣∣∣∣Ua = x, Ub = y



= E

 ∑
A⊂E(H)
|A|≥1

∏
(i,j)∈Ac

W (Ui, Uj)
∏

(i,j)∈A

R(Ui, Uj)

∣∣∣∣∣∣∣∣ Ua = x, Ub = y

 .

Recalling (1.11), note that,

∥(W +R)H −RH∥∞→1 =

∥∥∥∥∥∥
∑

1≤a̸=b≤|V (H)|

∆a,b(x, y)

∥∥∥∥∥∥
∞→1

≤
∑

1≤a̸=b≤|V (H)|

∥∆a,b(x, y)∥∞→1 , (A.2) eq:Deltaxy

by the triangle inequality. Hence, to prove (A.1) it suffices to consider each term in the above sum
separately. Towards this,

∥∆a,b(x, y)∥∞→1

= sup
∥f∥∞≤1
∥g∥∞≤1

∣∣∣∣∣∣∣∣E
E

 ∑
A⊂E(H)
|A|≥1

∏
(i,j)∈Ac

W (Ui, Uj)
∏

(i,j)∈A

R(Ui, Uj)

∣∣∣∣∣∣∣∣ Ua, Ub

 f(Ua)g(Ub)


∣∣∣∣∣∣∣∣

= sup
∥f∥∞≤1
∥g∥∞≤1

∣∣∣∣∣∣∣∣E
 ∑

A⊂E(H)
|A|≥1

f(Ua)g(Ub)
∏

(i,j)∈Ac

W (Ui, Uj)
∏

(i,j)∈A

R(Ui, Uj)


∣∣∣∣∣∣∣∣

= sup
∥f∥∞≤1
∥g∥∞≤1

∣∣∣∣∣∣∣∣
∑

A⊂E(H)
|A|≥1

E

f(Ua)g(Ub)
∏

(i,j)∈Ac

W (Ui, Uj)
∏

(i,j)∈A

R(Ui, Uj)


∣∣∣∣∣∣∣∣

≤
∑

A⊂E(H)
|A|≥1

sup
∥f∥∞≤1
∥g∥∞≤1

∣∣∣∣∣∣E
f(Ua)g(Ub)

∏
(i,j)∈Ac

W (Ui, Uj)
∏

(i,j)∈A

R(Ui, Uj)

∣∣∣∣∣∣ , (A.3) eq:Deltaxyfg
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by the triangle inequality. Now, by a telescoping argument similar to the proof of the counting
lemma (see [16, Theorem 3.7] and [38, Lemma 10.24]) it can be shown that

sup
∥f∥∞≤1
∥g∥∞≤1

∣∣∣∣∣∣E
f(Ua)g(Ub)

∏
(i,j)∈Ac

W (Ui, Uj)
∏

(i,j)∈A

R(Ui, Uj)

∣∣∣∣∣∣ ≲H ∥R∥∞→1. (A.4) eq:WAfg

Combining (A.2), (A.3), and (A.4), the result in (A.1) follows. □

Appendix B. Independence of Bivariate Stochastic Integrals

Fix d ≥ 1. Given a bounded function f : [0, 1]d → R, denote by Id(f) the d-dimensional Wiener-
Itô stochastic integral of f with respect to a Brownian motion on [0, 1]. Conditions under which

2 multiple stochastic integrals are independent are well-known. Üstünel and Zakai [62] provided a
useful necessary and sufficient for the independence of multiple stochastic integrals and Rosiński
and Samorodnitsky [57] showed that multiple stochastic integrals are independent if and only if
their squares are uncorrelated. An asymptotic version of these results was established by Nourdin
and Rosiński [51]. Using this asymptotic result we prove the following lemma:

⟨lem:almost_independent_L2⟩Lemma B.1. Fix W ∈ W1 and consider a sequence of bounded kernels {Rn}n≥1, with Rn ∈ W1,
such that ∥Un∥□ → 0. Then Qn := (I2(Rn), I2(W )) are asymptotically independent along any
subsequence for which Qn has a limit in distribution.

Proof. Note that by definition EI2(Rn) = 0 and Var I2(Rn) = O(1), since Rn is bounded. This
means Qn converges in distribution along a subsequence. Hence, by [51, Theorem 3.1] to show that
the asymptotic independence it suffices to check the following 2 conditions:ˆ

[0,1]2
Rn(x, y)W (x, y)dxdy → 0 and

ˆ
[0,1]2

(ˆ 1

0
Rn(x, z)W (z, y)dz

)2

dxdy → 0. (B.1) eq:WR

The first condition in (B.1) follows from [38, Lemma 8.22]. For the second condition note that:
ˆ
[0,1]2

(ˆ 1

0
Rn(x, z)W (z, y)dz

)2

dxdy

=

ˆ
[0,1]4

Rn(x, z)W (z, y)Rn(x, z
′)W (z′, y)dzdz′dxdy

=

ˆ
[0,1]2

(ˆ
[0,1]2

gn(x, y)Rn(x, z)W (z, y)dxdz

)
dy (where gn(x, y) :=

´
[0,1]Rn(x, z

′)W (z′, y)dz′)

= ∥Rn∥□ → 0.

This establishes the second condition in (B.1) and completes the proof of Lemma B.1. □

Appendix C. A CLT for Weighted Sum of Centered χ2 Random Variables

In this section we establish a Central Limit Theorem for an infinite weighted sum of independent
centered χ2 random variables.

⟨lm:chisquareCLT⟩
Lemma C.1. Consider a sequence of infinite sequences {(a(n)s : s ≥ 1)}n≥1 satisfying the following
conditions:

lim
n→∞

max
s≥1

|a(n)s | = 0 and lim
n→∞

∑
s≥1

(a(n)s )2 = τ2, (C.1) eq:sequence
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for some constant τ ≥ 0. Let {ξs}s≥1 be an i.i.d. sequence of χ2
k − k random variables. Then the

infinite sum
∑

s≥1 a
(n)
s ξs is well defined, for n large enough, and, as n → ∞,∑

s≥1

a(n)s ξs
D→ N

(
0, 2kτ2

)
. (C.2) eq:chisquaredsum

Proof. Fix M ≥ 1 and let FM := σ({ξs}Ms=1) be the sigma algebra generated by {ξs}Ms=1 and

S
(n)
M :=

∑M
s=1 a

(n)
s ξs. Then (SM ,FM ) is a martingale with

sup
M≥1

E(S(n)
M )2 ≤

∑
s≥1

(a(n)s )2 < ∞,

for all n large enough. Hence, the sum
∑

s≥1 a
(n)
s ξs is well defined, for n large enough.

We will show (C.2) by establishing the convergence of the Moment Generating Function (MGF).

By [10, Proposition 7.1] we know that the MGF of
∑

s≥1 a
(n)
s ξi is well defined in a neighborhood

of zero. In particular, for |λ| < 1
8 , one has

En(λ) := E
(
eλ

∑
s≥1 a

(n)
s ξi

)
=
∏
s≥1

e−λka
(n)
s(

1− 2λa
(n)
s

) k
2

.

Taking logarithms on both sides,

log En(λ) = −k

2

∑
s≥1

log
(
1− 2λa(n)s

)
− λk

∑
s≥1

a(n)s =
k

2

∑
s≥1

∞∑
t=1

(2λa
(n)
s )t

t
− λk

∑
s≥1

a(n)s

=
k

2

∑
s≥1

∞∑
t=2

(2ta
(n)
s )t

t

=
k

2

∑
s≥1

∞∑
t=3

(2λa
(n)
s )t

t
+ kλ2

∑
s≥1

(a(n)s )2. (C.3) eq:mgf_doublesum

Denote by a
(n)
s the s-th largest among {a(n)s }s≥1. Then, for any L ≥ 1, we have

4τ2 ≥
∑
s≥1

(a(n)s )2 ≥
L∑

s=1

(a
(n)
(s) )

2 ≥ L(a
(n)
(L))

2,

for all n large enough. (Note that the first inequality in the display above holds for all n large

enough by the second condition in (C.1).) This implies, a
(n)
(L) ≤

2τ√
L
, for n large enough and L ≥ 1.

Hence, for |λ| < 1
8τ ,∑

s≥1

∞∑
t=3

|λa(n)s |t

t
≤
∑
s≥1

∞∑
t=3

|λa(n)(s) |
t ≤

∑
s≥1

∞∑
t=3

∣∣∣∣4λτ√
s

∣∣∣∣t ≤∑
s≥1

∞∑
t=3

∣∣∣∣ 1

2
√
s

∣∣∣∣t < ∞. (C.4) eq:ansum

This shows that the double sum in (C.3) is absolutely convergent. Also, for t ≥ 3,

lim
n→∞

∣∣∣∣∣∣
∑
s≥1

(a(n)s )t

∣∣∣∣∣∣ ≤ lim
n→∞

max
s≥1

|a(n)s |
∑
s≥1

(a(n)s )2 = 0,
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from (C.1). Hence, by the Dominated Convergence Theorem (observe that the bound in (C.4) is
uniform over n),

lim
n→∞

∑
s≥1

∞∑
t=3

|λa(n)s |t

t
= 0.

Hence, taking limits as n → ∞ on both sides of (C.3) gives, for |λ| < 1
8τ

lim
n→∞

En(λ) = ekτ
2λ2

,

which is the MGF of N(0, 2kτ2). This completes the proof of Lemma C.1. □
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